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Polyelectrolyte/post collisions during electrophoresis:
Influence of hydrodynamic interactions
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Abstract. We consider the interaction of an homogeneous polyelectrolyte with an obstacle during elec-
trophoretic drift. We explicitly take into account the hydrodynamic interactions generated by this me-
chanical trapping, and we evaluate their influence on the unhooking process. Important qualitative effects
are pointed out in low and moderate field regimes. However, numerical simulations indicate that, in strong
field, the existing simpler local force models, which neglect these hydrodynamic interactions, are quanti-
tatively acceptable.

PACS. 87.15.He Molecular dynamics and conformational changes – 82.45.+z Electrochemistry
and electrophoresis – 36.20.-r Macromolecules and polymer molecules

1 Introduction

1.1 Aim

The separation of charged macromolecules according to
their size is both a technical and a scientific issue. Ge-
netic engineering extensively relies on the fractionation
of DNA, a semi-flexible polyelectrolyte, for which elec-
trophoresis, i.e. electric field driven migration, is the most
widespread technique. The mobility of polyelectrolytes in
free solution being size independent, electrophoresis is of-
ten performed in gels, which act as sieving media, under
constant or pulsed field (to prevent permanent chain align-
ment that leads to uniform velocity) [1–3]. However, for
very large DNA chains, this technique becomes time con-
suming, inaccurate and even impossible to perform be-
yond a certain size. Microlithographically etched arrays
of posts have recently been suggested as an alternative
sieving medium that would allow obstacle geometry opti-
mization, and sample retrieval [4–6].

In order to improve the microscopic control of the sep-
aration in the latter systems, one must analyze the unit
process of a chain’s migration in such media: the collision
of a polyelectrolyte with a fixed obstacle under electric
field. In the dilute limit we will consider here, it is legiti-
mate to single out this event, but the process is qualita-
tively different when the post concentration is such that a
chain interacts with many obstacles simultaneously [4,6].

Several authors have addressed this collision problem,
and have developed numerical simulations based on the
same local friction model [7,8]. The polymer is modeled
as a Rouse-like bead-spring polyelectrolyte, where each
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monomer locally contributes to the friction: no hydrody-
namic interactions are taken into account, neither between
the polymer and the post, nor within the coil itself. The
motivation for this last assumption is that it correctly de-
scribes the free flow electrophoretic motion of homoge-
neous polyelectrolytes, and that it also provides a sub-
stantial simplification for numerical calculations.

However, recent theoretical elements lead us to ques-
tion the applicability of this “local force” picture [9,10].
Between collisions, a polyelectrolyte is “free draining”: in
purely electro-osmotic situation, hydrodynamic interac-
tions are negligible and the coil drifts, transparent to the
solvent. But during a collision, the obstacle applies on the
polymer a non-electric force, which, as we recall below,
gives rise to unscreened hydrodynamic interactions (not
taken in account into the Rouse-like model). Following
the analysis developed in [9], we will evaluate the effects of
these interactions qualitatively (Sect. 2), then numerically
in the strong field regime (Sect. 3). In both sections, we
will compare the results of our model including hydrody-
namic interactions with that of the local force Rouse-like
model, denoted “HI” and “R” respectively.

1.2 Notations and recent results
for an end-anchored chain

Let us first recall the difference between free flow elec-
trophoresis and the case of an end-anchored polyelec-
trolyte under an electric field E. This example, as
discussed in [9], illustrates the role of hydrodynamic in-
teractions, and will be a useful guide line in the following
section.
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Fig. 1. Schematic configurations of a positively charged chain
under: a) intermediate field, b) strong field. The force F from
the post maintains the anchored extremity immobile.

In this paper, the polymer is pictured as a uniformly
charged Gaussian chain of rigid segments, without ex-
cluded volume effects. We use the same frame of assump-
tions regarding the linearity of electric and non electric
effects as in [9]. Notations are the following: the chain’s
contour length is Na, with a the persistence length, its
extension in the direction of the driving field is noted L,
and its radius of gyration Rg ∼ aNν , ν being the Flory
exponent. The fluid viscosity is noted η, and the ionic
strength is supposed high enough for the Debye-Hückel
screening length κ−1 to be smaller or of the same order
than a. The free drift velocity is V = µE, where µ is the
electrophoretic mobility. The Rouse model characterizes
the chain by a local charge q and a local friction λ ∼ ηa,
per persistence length.

In free flow electrophoresis, the flow due to counter-
ions exactly cancels the hydrodynamic Stokes flow induced
by the motion of the monomers: long range interactions
are screened, [11,12]. Thus, µ is independent of size and
configuration, and a pure electrophoretic drag does not
generate chain deformation. In the Rouse picture, the bal-
ance of the extensive electric and viscous forces happens
to lead also to a size independent mobility µR = q/λ, al-
lowing formal identification of the two pictures (µ ≡ µR).

On the other hand, the stretching of an anchored poly-
electrolyte is caused by the anchoring force F only, as the
electric field alone is unable to deform the chain (Fig. 1).
The chain is now immobile, so F alone would pull the
anchored point at V = −µE. Therefore the deformation
and equilibrium conformation of this polyelectrolyte can
be derived from an hydrodynamic equivalent picture: an
anchored chain in a solvent flowing at speed µE [9,10].
Consequently F scales like the extension, FHI = ηµLE;
whereas with a Rouse-like model, where hydrodynamic
interactions are ignored, F would appear proportional to
the contour length, FR = NqE.

Three field regimes can be distinguished:

1)Weak field: E < Ec. The coil is not deformed, L ∼ Nν .
This holds until F ∼ kBT/Rg, corresponding to a field
deformation threshold EcHI ∼ N−2ν , whereas the local
force model yields EcR ∼ N−(1+ν).

2)Intermediate field: Ec < E < E∗. The chain stretches

into a trumpet of size LHI ∼ N
ν

(2ν−1)E
(1−ν)
(2ν−1) (while

LR ∼ N
1
νE(

1
ν
−1)) [13,14]. This extension depends thus

on hydrodynamic interactions, and so does the elongation
time t ∼ L/µE. This regime holds until F ∼ kBT/a, that
is for E∗ ∼ kBT/ηµNa

2 in both models, when Gaussian
elasticity breaks down, due to the finite extensibility of
the chain.

3)Strong field: E > E∗. The chain is almost fully extended,
so L ∼ N , in both models.

From this example, we clearly see that the combined
actions of electric and “neutral” forces give rise to hydro-
dynamic interactions that are likely to affect scaling laws.

2 Qualitative analysis of the
polyelectrolyte/obstacle collision problem

Let us now consider the “collision” of a polyelectrolyte
with a post during electrophoresis. Our first point is to
determine the trapping threshold field Ec; we then present
a qualitative picture of the unhooking process for E > Ec,
emphasizing the role of hydrodynamic interactions; we
conclude this section with a closer look at these interac-
tions in the strong field regime. This last point will bring
us to the more quantitative analysis of Section 3.

In this paper, the following simplifications are made:
the obstacle is a fixed cylinder, perpendicular to the field.
The post is neutral and its radius is supposed small com-
pared to the chain’s persistence length, therefore specific
chain/post friction as well as perturbation of the sur-
rounding electric and hydrodynamic fields are neglected:
the post is thus reduced to a virtual uncrossable line.

Lead by the above example, we may then use, in our
model, an equivalent hydrodynamic picture of the prob-
lem: a neutral coil colliding with a post in a solvent flowing
at speed µE. Collective effects are thus expected, as op-
posed to the Rouse picture where the collision is controlled
by mere local forces along the backbone.

2.1 Trapping thresholds

When the drifting coil hits the post, the chain deforms
(and is likely to be trapped) if the resistance force F ,
exerted by the post, is greater than kBT/Rg. From the
discussion in 1.2, we expect trapping above a field EcHI ∼
(kBT/µηa

2)N−2ν , whereas a local force picture would give
EcR ∼ (kBT/qa)N−(1+ν). For E < Ec, the coil slides
along the post, and its effective mobility is mostly not
affected.

The trapping thresholds can be understood in terms
of relaxation times. The above condition over F also reads
ξV > kBT/Rg, where V = µE is the free drift velocity,
and ξ is the model dependent friction. Let τ be the chain’s
relaxation time, i.e. the time a coil takes to diffuse over its
own size. From Einstein’s relation we have R2

g/τ ∼ kBT/ξ,
which leads to V > Rg/τ for the trapping condition. In
other words, the polymer will hook onto the post if the
post penetrates in the coil faster than the chain can re-
organize to avoid it. Note that τ is the Rouse relaxation
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E

Fig. 2. Schematic picture of a polyelectrolyte/post collision
during electrophoretic drag.

time in the local friction model, and the Zimm time when
hydrodynamic interactions are taken into account.

2.2 Unhooking

For E > Ec there is an effective polymer/post interaction.
The coil, seen as a 3D random walk, is crushed against
the post, and loops of polymer are pulled on each side
(Fig. 2). Loops elongate, and a pulley-like competition
takes place: the longer loops phagocyte the shorter ones
until release, when all monomers have been pulled onto
one side. Since tension vanishes at its downstream end,
each loop is equivalent to a couple of adjacent strands
(half loops): a polyelectrolyte trapped on a post can thus
be roughly pictured as a dynamic collection of connected
strands stretched by neutral and electric forces, similarly
to the description of a single strand in 1.2.

The broad initial loop lengths distribution smoothes
the field regime limits, all the more so as elongation is
coupled to competition, nonetheless one can distinguish
“intermediate” and “strong” field regimes.

Intermediate field regime: the average half loop confor-
mation is a trumpet. Extensions do not scale like contour
lengths, therefore, as seen in the first section, the whole set
of pulling forces, that drive the elongation and unhooking
dynamics, obeys different scaling laws whether hydrody-
namic interactions are ignored or not.

It is difficult to go beyond this rough qualitative differ-
ence between the models. However, Sevick and Williams
have shown, in the Rouse picture, that a large part of the
average unhooking time is spent in a final hairpin con-
figuration (Fig. 3a) [7]. Let us thus focus on this simpler
ultimate stage, which can moreover be seen as the elemen-
tary competition process between two given loops at any
step of the unhooking.

Consider a U -shape configuration in the trumpet
regime: Li=1,2 are the extensions of the two strands (L1 >
L2), Nia their contour lengths, and v = a dL1/dt the elon-
gation exchange rate. The trumpets are pulled by electric
forces Fi, with FiHI = ηLiµE, and FiR = NiqE: initial
extensions and unhooking dynamics both scale differently
according to the model. Time evolution is determined by
the balance of the combined electro-hydrodynamic forces
on the strands: F1 − ηL1v = F2 + ηL2v (≡ 1/2Fpost),

a) "U" Shape

b) "W" Shape

∆L

V=µΕ

zn(z)

d
Fpost

Fig. 3. Schematic typical extended chain configurations under
strong field (or under strong solvent flow).

Li depending itself on Fpost. In a very rough picture
where v ∼ µE and with a release time Tf estimated by
v ∼ L2,t=0/Tf one derives, in good solvent (ν = 3/5):

TfHI ∼ EN3, whereas TfR ∼ E−1/3N5/3.
In conclusion, since they change the pulling forces, hy-

drodynamic interactions strongly affect the release time,
even here, starting from a rather stretched configuration.
Preliminary steps being more “compact” (bigger differ-
ence between L and Na), one expects this effect to be all
the more important.

Strong field regime: when the drag force ηµNaE (or
equivalently NqE in the electric language) is larger than
kBT/a, in either model, all larger loops are fully extended,
extensions and contour lengths scale alike. At this level of
description, the Rouse-like model and our hydrodynamic
picture become equivalent. In addition, one should em-
phasize that, DNA being quite rigid a polymer, practi-
cal electrophoresis conditions may often take place in this
regime.

However, from the equivalent hydrodynamic picture
we see that one should also take into account interactions
between the loops, as well as between the two strands of
a given loop.

2.3 Interactions between loops

In the hydrodynamic picture, under intermediate or strong
field, the polymer is stretched into a set of loops (respec-
tively trumpets or stems) dragged by the solvent flow. Let
us analyze how these objects hydrodynamically interact.

Consider the simplest situation, in the strong field
regime: a polymer trapped in a balanced U -shape con-
figuration of elongation L (Fig. 3a, with ∆L = 0). The
two adjacent strands are separated by a distance d, with
d� L: their global friction is equivalent to the friction of
one strand alone, so the post exerts on the whole polymer
a force Fpost ∼ ηLµE. The effective tension on each strand
is thus half the tension a single strand would be submitted
to, in the absence of such an interaction. Obviously, this
mutual screening is all the more relevant in earlier, more
entangled, steps of the unhooking, when a large number of
loops “share” the overall friction. Due to these inter loop
interactions, the forces acting on each loop are reduced,
by a factor that depends on the instantaneous number of
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loops. In both regimes we may thus expect an effect on
the unhooking dynamics. Moreover, in the intermediate
regime, the elongation of the trumpets depend on these
respective tensions, and are thus reduced as well, so the
global friction, that determines the tensions in feedback,
is also affected.

To illustrate this, let us go back to the stretched U -
shape configuration (Fig. 3a): a screened drag force acts
on the adjacent portions, whereas the extra length ∆L
of the longer strand keeps its original friction. Since only
this excess length ∆L drives the unhooking, the release
time in this particular configuration happens to be unaf-
fected by the inter loop interaction. Yet, one can check
that in the “W” configuration (Fig. 3b), the unhooking is
indeed slowed down roughly by a factor 2, until a U -type
configuration is reached.

Lead by this observation, we wish to determine if
the hydrodynamic interactions between the polymer loops
qualitatively modify the general unhooking process. These
interactions appear both in the intermediate and in the
strong field regimes but, as they are not necessary in the
first case to discriminate between the models, we will fo-
cus now on the strong field regime. Due to the intricacy
of this process only a simplified numerical simulation was
attempted.

3 Simulations: inter-loop interactions
in strong fields

3.1 Model

A polymer/post collision is roughly composed of three
overlapping steps: impact, loop stretching, and competi-
tion. With the strong field assumption we simplify this
scenario. In this regime, deformation around the post and
elongation are much faster than chain diffusion, therefore
we may neglect internal reorganizations of the coil at im-
pact: the initial set of loops is obtained by simply splitting
the 3D random walk with a plane (trajectory of the post
in the coil). The direction along the post being irrelevant,
the preliminary impact step reduces thus to generating 1D
random walks, and splitting them at a distance b (impact
parameter) from their center of mass.

After impact the loops elongate and, because of their
broad distribution of lengths, competition takes place si-
multaneously: the shortest loops are absorbed before the
longer ones reach full extension. Putting this aspect aside,
we have chosen an artificial but manageable starting point:
all initial loops fully stretch, and the competition starts in
this configuration. The unhooking process is also simpli-
fied, being reduced to pulley-like competitions for strands
under strong tension (and thus at full extension), and free
drift for loops flipped over the post, until they reach ex-
tension again. Apart from this toppling over the post, the
present unhooking process differs from the usual hernia
competition discussed in [15,16], by the addition of collec-
tive effects (hydrodynamic screening), and by the broad
initial length distribution. The process should thus be im-
mediately sensitive to the walks’ initial realization and

finite size. The minimal dynamics allows us to probe a
wide range of chain sizes, and to average over large sam-
ples. However, the neglected loop stretching step after im-
pact could also contribute to the total collision time, and
certainly controls part of the sensitivity to the impact pa-
rameter. Nonetheless, the consistency of our results with
those of more elaborate simulations [7,8] indicates a pos-
teriori that this numerical model contains most of the
relevant physical information.

In a realistic description, the interactions should in-
clude shear flows due to the loops’ relative motions, as
well as “core” effects, friction being higher for the outer
loops than for those nested inside; and finally, due to its
finite radius, one should distinguish the inter-loop inter-
actions within one side and between the two sides of the
post. We proceed to a much simplified computation of the
interactions.

The chain is globally pulled by the solvent, flowing at
speed µE. At each step, all connected couples of loops
evolve according to a pulley-like competition determined
by their relative frictions. Let then n(z) be the number
of strands under tension at a downstream distance z from
the obstacle (Fig. 3b). The effective drag flow “seen” by a
loop segment at a distance z is approximated by µE/n(z),
in a mean field like picture; thus the total force applied
on a strand of length L, in a given configuration of the

chain, is ηµE
∫ L

0 1/n(z)dz (the total force on the chain,
ηµELchain, being conserved).

3.2 Results and comparison with previous data

We focus here on the parameters that eventually take part
in the size separation performances of the collision and in
the post spacing optimization: the release time Tf (elapsed
between the beginning of the loop competition and the
moment of untrapping), and the chain’s downstream ex-
tension at release (through the position of its center of
mass Zc).

As shown in Figure 4, the average release time scales
like the molecular weight N , both in the Rouse-like and in
the hydrodynamic models. This result is similar to those
obtained by previous simulations [7]. In the first model,
this scaling can be expected: the time evolution equations
are homothetic [15,16], and the loop length initial distri-
bution obeys a power law (apart for the unit length cut-off
determined by the persistence length). Consequently, the
initial cut-off dependent steps having a negligible contri-
bution, the total release time is proportional to N . How-
ever, this can no longer be readily predicted in the com-
plete hydrodynamic model, as Tf is partly controlled by
the number of loops, which has a non-extensive behavior,
initially scaling like N1/2.

As shown in Figure 5, the unhooking time follows
a self-similar distribution regarding system size, that is
conserved and roughly unchanged whether hydrodynamic
interactions are taken into account or not. This kind of
self-similarity was also found in models describing hernia
competition under electrophoresis [15,16].



P. André et al.: Hydrodynamic interactions in polyelectrolyte/post collision 311

0 2000 4000 6000 8000 10000
Size N

0.55

0.65

0.75

<
T

f>
/N

Rouse−like model
Hydrodynamic model

Fig. 4. The collision time is averaged for 5000 walks, with
b = 0. Both the persistence length a, and the free drift velocity
µE are set to unity. Finite size effects appear for N < 100.
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Fig. 5. Distribution of release time for a sample of 5000 cen-
tered polymers (b = 0). The plots are rescaled with the average
release time for each size: they stabilize for N > 100. The dis-
tribution tails are exponential.

Finally, comparing the data shown in Figures 6 and 7,
one observes that the hydrodynamic model roughly gives
the same final elongation distribution as in the Rouse-
like one. Figure 6 is, in addition, in fairly good quanti-
tative agreement with the data presented by Sevick and
Williams, and, like these authors, we notice the dominant
statistical weight of final hairpin configurations (as dis-
cussed in Sect. 2.2). We also obtain, in both models, an
exponential decrease of Tf with the impact parameter b
(data not shown), in consistency with [7] (however, due
to our assumption for the initial stretching steps, we do
not expect our model to be really adequate for describing
very off-centered impacts).

In conclusion, in strong field regime and given our sim-
plified numerical model, hydrodynamic screening between
chain loops does not noticeably affect the average geomet-
rical and time characteristics of the unhooking process: the
scaling and statistical features of the release time, as well

0.0 2.0 4.0
Tf/<Tf>
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Fig. 6. The chains’ final extension is plotted against the cor-
responding release time, in reduced values, for a sample of 105

chains of length N = 200, in the case of centered collisions
(b = 0). This extension is estimated with Zc, the final down-
stream distance of the chain’s center of mass to the post. As
in [7], Zc is roughly linear for (Tf/〈Tf 〉) ≤ 0.5, the satura-
tion at Zc = N/2 showing the importance of balance hairpin
configurations. One also sees the trace of double hairpins at
Zc = N/4.
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Fig. 7. We take in account inter-loops interactions using the
same sample as in Figure 6.

as the chains’ extensions at release, keep the properties
given in the Rouse-like approach.

Focusing on details, we refine the comparison between
the Rouse-like and the hydrodynamic models. It appears
from Figure 4 that, surprisingly, the mean unhooking time
is shorter in the hydrodynamic model, whereas one could
expect the hydrodynamic screening to slow down the un-
trapping, as it globally reduces the dragging forces. Fig-
ure 8 indicates a slower evolution at the beginning of the
unhooking in the hydrodynamic case. Finally, comparing
Figure 6 with Figure 7 suggests that including interactions
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Fig. 8. Zc is the downstream distance of the chains’ center of
mass to the post. Its time evolution is rescaled with the actual
final release time Tf for each chain, then average over a large
sample of chains. Plots for several chain sizes (N ranging from
50 to 5000) collapse on one curve in each model. Impacts are
centered (b = 0).

results in longer trapping times when the releases occur
in many loops configurations (typically Zc(Tf ) ≤ N/4),
whereas very stretched configurations releases (Zc ∼ N/2)
are shifted to shorter times. This point can also be seen
in the slightly sharper distributions in the hydrodynamic
model shown in Figure 5. A possible explanation consis-
tent with all these observations is that the screening is
very non-uniform along the chain: in the initial distribu-
tion of loops there is a large number of rather small loops
(L � N1/2), and a few very long loops (L ∼ N) (usual
properties of random walks [17]); in our hydrodynamic
model, the friction sharing implies that the short loops
are under very reduced tension, and are thus “frozen”.
One can then speculate that, because of these interactions,
the longest loops, which drive the unhooking, emerge im-
mediately and more efficiently than in the more “egalitar-
ian” local force model. As a final remark, although release
times and extensions are very similar in both models, the
dynamical differences at short times (Fig. 8) may be im-
portant under pulsed field conditions.

4 Discussion

In this paper, using the ideas developed in [9,10], we have
given a theoretical analysis of the interaction between
a polyelectrolyte and a fixed post under electrophoretic
conditions. Our approach yields a new interaction thresh-
old, and predicts strong qualitative modifications to the
previous descriptions in moderate field regimes. Under
strong electric field however, our simulations show that
the remaining inter-loop interactions do not affect the
global pictures emerging from the analysis using simplified
Rouse-like models presented in [7,8]; they validate thus
the previous conclusions concerning polyelectrolyte frac-

tionation by single collision processes. Let us note that
the hydrodynamic interactions produce nonetheless dy-
namical effects that may show up in transient or pulsed
fields.

We have developed a simple numerical model for the
strong field regime which leads, in its Rouse-like version,
to results quantitatively similar to those obtained in more
complex numerical approaches (Langevin and Brownian
dynamics [7,8]). This agreement allows us to test much
larger chains than in these simulations, and suggests that
neither a precise description of the chain’s elasticity nor
molecular dynamics seem relevant. The model could be
improved however to better describe the initial stretching
step and thus the off-centered impacts.

In conclusion, let us note the different aspects that
could be also included for a more realistic description. In
particular, the post is modeled here as a virtual obstacle,
whereas in a more realistic picture, its actual size, geom-
etry and surface properties, result in electro-osmotic and
hydrodynamic flows. We have also assumed the absence
of boundary effects, although migrations often take place
in slabs where the walls screen the hydrodynamic inter-
actions, generating nonetheless important osmotic flows
[4,18]. Furthermore, under strong fields, several compli-
cations may arise: the actual mobility of DNA depends
slightly on the orientation of its segments [19], and is thus
expected to change as the chain reaches strong extensions;
also, non linear couplings between mechanical forces and
electric drag can modify somewhat the analysis.
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